Lineare Algebra Beispiele

미분 구하기 - d/dx (x+7)/x+6/(3x+21)
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.6
Addiere und .
Schritt 2.7
Mutltipliziere mit .
Schritt 2.8
Mutltipliziere mit .
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Faktorisiere aus heraus.
Schritt 3.1.2.2
Faktorisiere aus heraus.
Schritt 3.1.2.3
Faktorisiere aus heraus.
Schritt 3.1.2.4
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.5
Forme den Ausdruck um.
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Schreibe als um.
Schritt 3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Ersetze alle durch .
Schritt 3.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.8
Addiere und .
Schritt 3.9
Mutltipliziere mit .
Schritt 3.10
Mutltipliziere mit .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.2
Wende das Distributivgesetz an.
Schritt 4.3
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Subtrahiere von .
Schritt 4.3.3
Subtrahiere von .
Schritt 4.3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.5
Kombiniere und .
Schritt 4.3.6
Ziehe das Minuszeichen vor den Bruch.